Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Tópicos
Tipo de documento
Intervalo de ano
1.
Comput Methods Programs Biomed ; 236: 107526, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-20231106

RESUMO

BACKGROUND: We provide a compartmental model for the transmission of some contagious illnesses in a population. The model is based on partial differential equations, and takes into account seven sub-populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quarantined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze an efficient computer method which resembles the dynamical properties of the epidemiological model. MATERIALS AND METHODS: A non-local approach is utilized for finding approximate solutions for the mathematical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable circumstances, the matrices representing the methodology are M-matrices. RESULTS: Analytically, the local asymptotic stability of the constant solutions is investigated and the next generation matrix technique is employed to calculate the reproduction number. Computationally, the dynamical consistency of the method and the numerical efficiency are investigated rigorously. The method is thoroughly examined for its convergence, stability, and consistency. CONCLUSIONS: The theoretical analysis of the method shows that it is able to maintain the positivity of its solutions and identify equilibria. The method's local asymptotic stability properties are similar to those of the continuous system. The analysis concludes that the numerical model is convergent, stable and consistent, with linear order of convergence in the temporal domain and quadratic order of convergence in the spatial variables. A computer implementation is used to confirm the mathematical properties, and it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their local asymptotic stability.


Assuntos
Modelos Teóricos , Quarentena , Humanos , Simulação por Computador , Vacinação
2.
Comput Methods Programs Biomed ; 221: 106920, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1926327

RESUMO

BACKGROUND AND OBJECTIVE: In this manuscript, we consider a compartmental model to describe the dynamics of propagation of an infectious disease in a human population. The population considers the presence of susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered and vaccinated individuals. In turn, the mathematical model considers various mechanisms of interaction between the sub-populations in addition to population migration. METHODS: The steady-state solutions for the disease-free and endemic scenarios are calculated, and the local stability of the equilibium solutions is determined using linear analysis, Descartes' rule of signs and the Routh-Hurwitz criterion. We demonstrate rigorously the existence and uniqueness of non-negative solutions for the mathematical model, and we prove that the system has no periodic solutions using Dulac's criterion. To solve this system, a nonstandard finite-difference method is proposed. RESULTS: As the main results, we show that the computer method presented in this work is uniquely solvable, and that it preserves the non-negativity of initial approximations. Moreover, the steady-state solutions of the continuous model are also constant solutions of the numerical scheme, and the stability properties of those solutions are likewise preserved in the discrete scenario. Furthermore, we establish the consistency of the scheme and, using a discrete form of Gronwall's inequality, we prove theoretically the stability and the convergence properties of the scheme. For convenience, a Matlab program of our method is provided in the appendix. CONCLUSIONS: The computer method presented in this work is a nonstandard scheme with multiple dynamical and numerical properties. Most of those properties are thoroughly confirmed using computer simulations. Its easy implementation make this numerical approach a useful tool in the investigation on the propagation of infectious diseases. From the theoretical point of view, the present work is one of the few papers in which a nonstandard scheme is fully and rigorously analyzed not only for the dynamical properties, but also for consistently, stability and convergence.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Simulação por Computador , Computadores , Modelos Epidemiológicos , Humanos , Modelos Biológicos , Vacinação
3.
Mathematical Methods in the Applied Sciences ; : mma.7096-mma.7096, 2020.
Artigo em Inglês | Wiley | ID: covidwho-972241

RESUMO

In this work, we propose a time‐delayed reaction–diffusion model to describe the propagation of infectious viral diseases like COVID‐19. The model is a two‐dimensional system of partial differential equations that describes the interactions between disjoint groups of a human population. More precisely, we assume that the population is conformed by individuals who are susceptible to the virus, subjects who have been exposed to the virus, members who are infected and show symptoms, asymptomatic infected individuals, and recovered subjects. Various realistic assumptions are imposed upon the model, including the consideration of a time‐delay parameter which takes into account the effects of social distancing and lockdown. We obtain the equilibrium points of the model and analyze them for stability. Moreover, we examine the bifurcation of the system in terms of one of the parameters of the model. To simulate numerically this mathematical model, we propose a time‐splitting nonlocal finite‐difference scheme. The properties of the model are thoroughly established, including its capability to preserve the positivity of solutions, its consistency, and its stability. Some numerical experiments are provided for illustration purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA